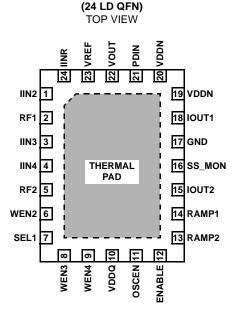
Data Sheet December 18, 2006 FN7440.0

Dual Laser Driver with APC Amplifier and Spread Spectrum Oscillator

The ISL58831 is a combination read + 3 write level laser driver and IV amplifier, with an extra read + oscillator ROM channel for use in dual-laser 'Combo' drivers. A separate (amplitude and frequency) oscillator modulates the selected output for laser noise reduction during read or write. All these functions are provided in a 24 Ld QFN package.

The SEL1 pin, when high, selects the DVD (write) laser. Positive current supplied to the I_{IN} lines, through a user-selected resistor, allow the full scale range of each amplifier to be matched to the full scale range of the users control DACs. When the write laser is selected, and the WEN pins are switched low, the respective current is summed to the output with 1ns rise and fall times. Write channel 2 has 240mA output capability with an 250X gain amplifier.


The 100mA_{P-P} (max) oscillator is switched on and off by the OSCEN line. The SEL1 line allows the oscillator to operate at different amplitudes and frequencies for each laser.

The entire chip is powered down when ENABLE is low. The user can define the gain of the I/V amplifier. With a slew rate of $200V/\mu s$, the I/V amplifier can normally settle to 1% within 30ns.

An internal spread spectrum circuit modulates the oscillator frequency to help reduce peak EMI.

ISL58831

Pinout

Features

- "Shrink-small" outline package
- Voltage-controlled output current source requiring one external set resistor per channel
- · Current-controlled output current source
- CH2 to 235mA max
- CH3 to 170mA max
- CH4 to 100mA max
- Rise time = 0.8ns
- Fall time = 0.8ns
- On-chip oscillator with frequency and amplitude control by use of external resistors to ground
- · Oscillator to 600MHz
- Oscillator to 100mA_{P-P}
- Single +5V supply (±10%)
- Disable feature for power-up protection and power savings
- 200V/µs I/V amplifier
- · Internal spread spectrum modulation to reduce peak EMI
- Pb-free (RoHS compliant)

Applications

- Combo CD-R + DVD-R
- DVD±RW to 8X
- · Writable optical disk drives

Ordering Information

PART NUMBER (Note)	PART MARKING	PACKAGE (Pb-Free)	TAPE & REEL	PKG. DWG. #
ISL58831CRZ	58831 CRZ	24 Ld QFN	-	MDP0046
ISL58831CRZ-T13	58831 CRZ	24 Ld QFN	13"	MDP0046

NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings (T_A = +25°C)

Voltages Applied to: V_{DD}. -0.5V to +6.0V WEN -0.5V to V_{DD} +0.5V I_{INx} -0.5V to +5.0V $I_{\mbox{\scriptsize OUT}}$ -0.5V to $V_{\mbox{\scriptsize DD}} + 0.5V$ Power Dissipation (maximum) See pages 8, 9 Operating Ambient Temperature Range 0°C to +80°C Storage Temperature Range -65°C to +150°C

Recommended Operating Conditions

$V_{DD} \dots$	 	 	5V ±10%
R _{FREQ}	 	 	1500 Ω (min)
Fosc · · ·	 	 	00-600MHz
Aosc	 	 20-10	00mAmA _{P-P}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

Electrical Specifications V_{DD} = 5V, T_A = +25°C, ENABLE = HI, WEN = HI, OSCEN = LO, SEL1 = HI, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
V_{DD}	Supply Voltage		4.5	5.0	5.5	V
IS1	Supply Current (disabled)	ENABLE = <0.5V		0.1	100	μΑ
IS2	Supply Current	$I_{INR} = 0\mu A$, $I_{IN2/3/4} = 20\mu A$	34	40	46	mA
IS3	Supply Current	OSCEN = HI, I _{INR} = 0μA, I _{IN2/3/4} = 20μA	50	60	70	mA
IS4	Supply Current	$I_{INR} = 0\mu A$, $I_{IN2/3/4} = 500\mu A$	61	73	85	mA
IS5	Supply Current	I _{INR} = 200μA, I _{IN2/3/4} = 500μA	94	112	130	mA
DV_LO	Digital Low Voltage	WEN2/3/4, OSCEN inputs			1.3	V
EV _{LO}	Enable Low Voltage	ENABLE pin (to guarantee IS1)			0.5	V
DV _{HI}	Digital High Voltage	WEN2/3/4, OSCEN inputs	2.2			V
EV _{HI}	Enable High Voltage	ENABLE pin only	2.2			V
DV _{HICD}	Digital High Voltage	SEL1 only	2.2			V
DV _{LOCD}	Digital Low Voltage	SEL1 only			1.3	V
DI _{LO}	Digital Low Current	SEL1, OSCEN, ENABLE, WEN = 0.0V	-100			μΑ
DI _{HI}	Digital High Current	SEL1, OSCEN, ENABLE, WEN = 5.0V			100	μΑ
V _{SHUT}	V _{DD} Shutdown Voltage		3.5		3.9	V

Laser Amplifier V_{DD} = 5V, T_A = +25°C, ENABLE = HI unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
GAINR	Best Fit Current Gain	Channel R - I _{OUT1} (Note 1)	140	165	190	mA/mA
GAINR2	Best Fit Current Gain	Channel R2 - I _{OUT2} (Note 1)	70	82	95	mA/mA
GAIN2	Best Fit Current Gain	Channel 2 - I _{OUT1} (Note 1)	210	250	290	mA/mA
GAIN3	Best Fit Current Gain	Channel 3 - I _{OUT1} (Note 1)	170	200	230	mA/mA
GAIN4	Best Fit Current Gain	Channel 4 - I _{OUT1} (Note 1)	80	100	120	mA/mA
I _{OUTR}	Output Current	V_{DD} = 4.5V, V_{OUT} = 3.4V, output is sourcing, channel R - I _{OUT1} (Note 1), IINR = 2mA	150			mA
I _{OUTR2}	Output Current	V_{DD} = 4.5V, V_{OUT} = 2.1V, output is sourcing, channel R2 - I _{OUT2} (Note 1), IINR2 = 2mA	120			mA
I _{OUT2}	Output Current	V_{DD} = 4.5V, V_{OUT} = 3.4V, output is sourcing, channel 2 - I _{OUT1} (Note 1), IIN2 = 2mA	235			mA

FN7440.0 December 18, 2006

Laser Amplifier V_{DD} = 5V, T_A = +25°C, ENABLE = HI unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
Іоитз	Output Current	V _{DD} = 4.5V, V _{OUT} = 3.4V, output is sourcing, channel 3 - I _{OUT1} (Note 1), IIN3 = 2mA	170			mA
I _{OUT4}	Output Current	V _{DD} = 4.5V, V _{OUT} = 3.4V, output is sourcing, channel 4 - I _{OUT1} (Note 1), IIN4 = 2mA	100			mA
IOSR	Best Fit Current Offset	Channel R (Note 1)	-6		+6	mA
IOS2, 3, 4	Best Fit Current Offset	Channels 2, 3, 4 (Note 1)	-6		+6	mA
ILIN	Output Current Linearity	Any channel (Note 1)	-3		+4	%
IDAC	Input Current Range	Input is sinking	0		2	mA
R _{INR}	I _{INR} Input Impedance	R _{IN} is to GND	562	750	937	Ω
R _{IN2, 3, 4}	I _{IN2, 3, 4} Input Impedance	R _{IN} is to GND	375	500	625	Ω
VTH	WEN2/3/4 Threshold for Write Pulses	Temperature stabilized		1.68		V
I _{OFF1}	Output Off Current 1	ENABLE = LO			0.5	mA
I _{OFF2}	Output Off Current 2	WEN = HI, total for all channels			1.5	mA
I _{OFF3}	Output Off Current 3	WEN = LO, $I_{IN} = 0\mu A$, total for all channels			5	mA
VC1	I _{OUT} Supply Sensitivity	I _{OUT} = 40mA, V _{DD} = 5V ±10%, read only	-3		3	%/V
VC2	I _{OUT} Supply Sensitivity	I _{OUT} = 80mA, 40mA read + 40mA write	-3		3	%/V
IN _{OUT}	I _{OUT} Current Output Noise	I _{OUT} = 40mA, OSCEN = LO		3.5		nA/√Hz
TC1	I _{OUT} Temperature Sensitivity	I _{OUT} = 40mA, read only		+100		ppm/°C
TC2	I _{OUT} Temperature Sensitivity	I _{OUT} = 80mA, 40mA read + 40mA write		-100		ppm/°C

NOTE:

Laser Current Amplifier Outputs AC Performance V_{DD} = 5V, I_{OUT} = 40mA DC with 40mA pulse, T_A = +25°C unless otherwise

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
tr2	Write Risetime	I _{OUT} = 40mA (read) + 40mA (10%-90%)		0.8	2.0	ns
tf2	Write Falltime	I _{OUT} = 40mA (read) + 40mA (10%-90%)		0.8	2.0	ns
OS	Output Current Overshoot	See Application Notes		5		%
t _{ON}	I _{OUT} ON Prop Delay	Input timing to I _{OUT} at 50% of final value (Note 2)		2.0		ns
tOFF	I _{OUT} OFF Prop Delay	Input timing to I _{OUT} at 50% of final value (Note 2)		2.0		ns
T _{DIS}	Disable Time	Input timing to I _{OUT} at 50% of final value (Note 2)		20		ns
T _{EN}	Enable Time	Input timing to I _{OUT} at 50% of final value (Note 2)		150		ns
BW	Amplifier Bandwidth	I _{OUT} = 50mA, all channels, -3dB value		8		MHz
Fosc	Oscillator Frequency	$R_{FREQ} = 5600\Omega$	290	328	360	MHz
TC _{OSC}	Oscillator Temperature Coefficient	$R_{FREQ} = 4500\Omega$		200		ppm/°C

NOTE:

2. Input timing is defined as WENx or ENABLE input pulse crosses 1.68V. Input pulse is standard 3.3V CMOS-level TTL input

^{1.} The amplifier linearity is calculated using a best fit method at three operating points. The output currents chosen are 20mA, 40mA, and 60mA. The transfer function for I_{OUT} is defined as follows: $I_{OUT} = (I_{IN} * GAIN) + I_{OS}$.

 $\textbf{APC Amplifier} \quad \text{V_{DD} = 5V, T_{A} = +25°C, R_{LOAD} = 2kΩ to V_{REF} unless otherwise specified. }$

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
BW	Bandwidth	G = 1		100		MHz
SR	Slew Rate	$G = 1$, $V_O = 0.5V$ to $3V$		200		V/µs
ts	Settling Time	to 0.1%, V _{OUT} = 0.5V to 3V		30		ns
A _{VOL}	Open Loop Voltage Gain	V _{OUT} = 0.5V to 3V		80		dB
Vos	Offset Voltage	V _{REF} = 3V	-5		+5	mV
T _C V _{OS}	Input Offset Voltage Temperature Coefficient			+4		μV/°C
I _B	Input Bias Current	V _{REF} = 3V	-0.5		+0.5	μΑ
CMIR	Common Mode Input Range	CMRR ≥54dB	1		V _{DD} -1	V
CMRR	Common Mode Rejection Ratio	V _{CM} = 1.0V to 4.0V	55	75		dB
R _{IN}	Input Impedance			1		МΩ
C _{IN}	Input Capacitance	Pin 21 (P _{DIN})		2		pF
V _{OUT}	Output Voltage Swing	$R_L = 2k\Omega$ to V_{REF} (Note 3)	0.5		V _{DD} - 0.5	V

NOTE:

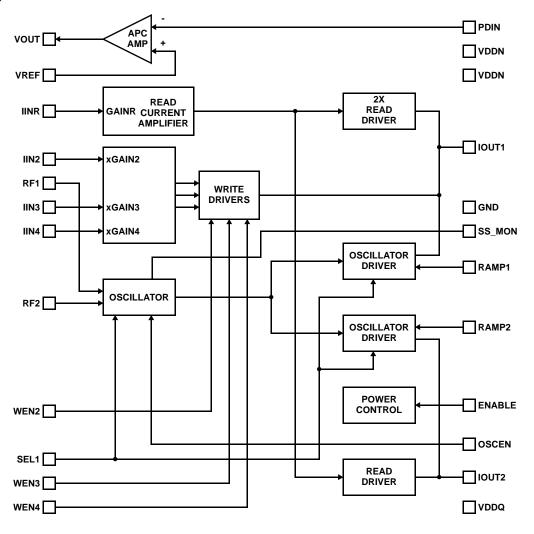
Pin Descriptions

PIN NUMBER	PIN NAME	PIN FUNCTION	PIN DESCRIPTION
1	IIN2	Analog	Input pin for IIN2, which current is amplified and output to IOUT1 (add external series resistor when voltage driven)
2	RF1	Analog	External resistor to ground sets the oscillator frequency when SEL1 = 1
3	IIN3	Analog	Input pin for IIN3, which current is amplified and output to IOUT1 (add external series resistor when voltage driven)
4	IIN4	Analog	Input pin for IIN4, which current is amplified and output to IOUT1 (add external series resistor when voltage driven)
5	RF2	Analog	External resistor to ground sets the oscillator frequency when SEL1 = 0
6	WEN2	Digital	WEN2 = 0 applies the current from the I _{IN2} amplifier to the I _{OUT} pin
7	SEL1	Digital	If SEL1 = 1, I_{OUT1} and R_{FREQ1} and R_{AMP1} are selected, otherwise I_{OUT2} and R_{FREQ2} and R_{AMP2} are selected
8	WEN3	Digital	WEN3 = 0 applies the current from the I _{IN3} amplifier to the I _{OUT} pin
9	WEN4	Digital	WEN4 = 0 applies the current from the I _{IN4} amplifier to the I _{OUT} pin
10	VDDQ	Power Supply	+5V supply for bias and amplifiers (connect all supplies)
11	OSCEN	Digital	OSCEN = 1 powers up the oscillator and oscillator driver and passes specified oscillator current to I _{OUT}
12	ENABLE	Digital	ENABLE = 1 powers up the chip, ENABLE = 0 puts the chip in power down mode
13	RAMP2	Analog	External resistor to ground sets the oscillator amplitude when SEL1 = 0
14	RAMP1	Analog	External resistor to ground sets the oscillator amplitude when SEL1 = 1
15	IOUT2	Analog	Output current source for ROM laser diode at [82*I _{INR} + I _{OSC} (ac)]
16	SS_MON	Analog	Modulation rate monitor
17	GND	Power Supply	Ground (connect all grounds)
18	IOUT1	Analog	Output current source for RW laser diode [100*(1.65*I _{INR} +2.5*I _{IN2} +2.0*I _{IN3} +I _{IN4})+I _{OSC} (ac)]
19	VDDN	Power Supply	+5V supply for output drivers (connect all supplies)

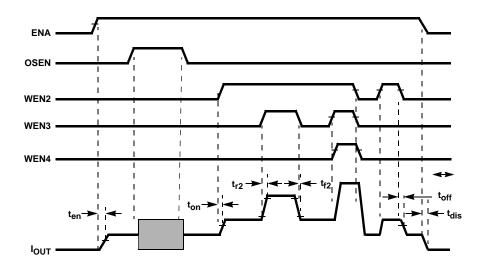
^{3.} R_L is total load resistance due to feedback resistor and load resistor. Recommended feedback resistor is $5k\Omega$.

Pin Descriptions (Continued)

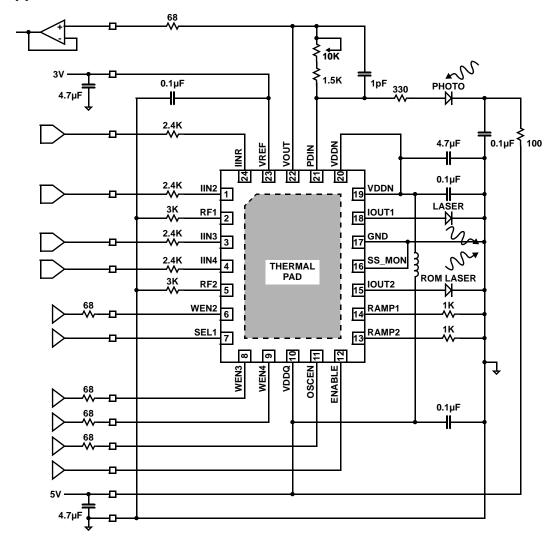
PIN NUMBER	PIN NAME	PIN FUNCTION	PIN DESCRIPTION
20	VDDN	Power Supply	+5V supply for output drivers (connect all supplies)
21	PDIN	Analog	Connect the photo diode to this pin for the I-V amplifier input; connect the gain resistor and compensation capacitor between PDIN and V _{OUT}
22	VOUT	Analog	Output voltage from I-V amplifier
23	VREF	Analog	Reference voltage for the I-V amplifier
24	IINR	Analog	Input pin for IINR (IINR2), which current is amplified and output to IOUT1 (IOUT2) (add external series resistor when voltage driven)


I_{OUT} Control

ENABLE	SEL1	WEN2	WEN3	WEN4	I _{OUT1}	I _{OUT2}
0	X	X	X	×	OFF	OFF
1	1	1	1	1	165*I _{INR}	OFF
1	1	0	1	1	(165*I _{INR}) + (250*I _{IN2})	OFF
1	1	1	0	1	(165*I _{INR}) + (200*I _{IN3})	OFF
1	1	1	1	0	(165*I _{INR}) + (100*I _{IN4})	OFF
1	0	X	Х	X	OFF	82*I _{INR}


Oscillator Control

ENABLE	OSCEN	SEL1	IOSCILLATOR
0	X	X	OFF
1	0	X	OFF
1	1	1	Oscillator On to I _{OUT1}
1	1	0	Oscillator On to I _{OUT2}


Block Diagram

Timing Diagram

Typical Application

Typical Performance Curves

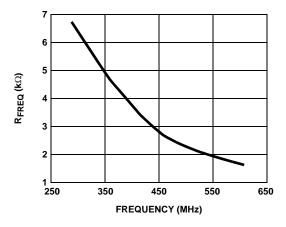
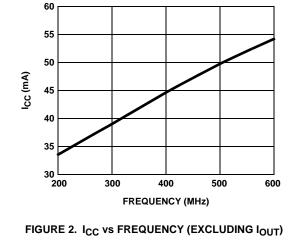



FIGURE 1. FREQUENCY CONTROL

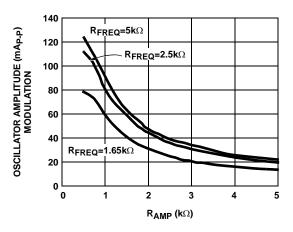


FIGURE 3. AMPLITUDE CONTROL

The ISL58831 oscillator frequency is controlled by the current being sourced at the R_{FREQ} pin. For a typical part, the following equation (accurate to better than 5MHz at any frequency) should be used to determine the frequency of operation:

$$FREQ_{(MHz)} = -5.9672 \times 10^{-10} \times R_{FREQ}^{3} +$$

$$1.5839 \times 10^{-5} \times R_{FREQ}^{2} - 0.1596 \times R_{FREQ} + 841.34$$
(EQ. 1)

Applications Information

Enable and Read Operation

The ENABLE line powers up the chip and supplies bias to all the circuits. After being enabled, read current can be obtained by applying a current to the I_{INR} input. The read power is usually operated in an automatic power control loop, by varying the current in the I_{INR} pin in response to the monitored laser light power. The defining equation for each amplifier is:

$$_{OUT} = \frac{V_{DAC}}{R_{SET} + R_{INx}} \times GAIN$$
 (EQ. 2)

Oscillator Operation

Usually a laser will be noisy due to mode-hopping often caused by variable optical feedback into the laser. R_{F} current can be applied to reduce this noise effect by bringing the OSCEN pin high. The amplitude of the R_{F} is set by the R_{AMP} resistor, and the frequency is set by the R_{FREQ} resistor. See the graphs for resistor set values.

 R_{F} current is applied in a on/off fashion. Thus if the R_{F} amplitude is 50mA pk-pk, 50mA will be added to the read current for half the R_{F} cycle, and then 0mA will be added to the read current for half the R_{F} cycle. In this case, if the threshold current is only 40mA, the average laser power could exceed the intended read laser power by about 2mW, due to the 50% duty cycle current of 10mA above threshold. So, in order to regulate the read power, it is necessary to make sure that the R_{F} amplitude is not much more than the required DC read current.

The circuit has a feature to increase the ability to turn off the laser for low threshold currents. At low read currents, the amplitude of the R_F will be reduced as the amplitude of the read current is reduced.

Write Levels

Typical applications will have at least two write powers. The recommended method to control the write power level is to assign channel 2 to the lowest power level above read and add in channel 3 to obtain the highest write power level. This spreads the gain over the most amplifiers, allows the largest current level to the laser, reduces the sensitivity of each input, and provides the most protection to the laser in case of erroneous input commands.

Write Switching Waveforms

The WEN lines are applied to a fast comparator set to 1.67V. This makes it possible to have predictable rise and fall propagation delays from the WEN write pulse inputs to the laser.

Power Supply Decoupling

Due to the high values of current being switched rapidly on and off, it is important to ensure that the power supply is well decoupled to ground. During switching, the V_{DD} undergoes severe current transients, thus every effort should be made to decouple the V_{DD} as close to the package as possible, and to route the laser cathode to the decoupling capacitor with a short wide trace. Symptoms that could arise include poor rise/fall times, current overshoot, and poor settling response. Since even a well placed bypass capacitor will have a response limitation due to the lead inductance, it might be necessary to also place a lossy bead, and a second decoupling capacitor on the supply side of the bead to prevent switching currents on the supply line from generating EMI.

Laser Diode Routing

It is very important to minimize the inductance of the trace between the I_{OUT} pin and the laser diode. This trace acts as an antenna for EMI, inhibits the flow of R_F and pulse current to the laser, and absorbs R_F current into ground. The ground return from the laser cathode to the chip and decoupling capacitors is best as a wide plane on both sides of the trace leading to the laser anode.

Ringing of the waveform might be observed on the I_{OUT} pin. The best way is to check the optical output of the laser with an optical probe. If ringing is confirmed that cannot be reduced by an improved layout, the addition of an RC snubber network right at the output of the laser driver may be helpful. Be aware however that the rise time might be affected, and that the pulse power might be affected by pattern dependent voltage build-up on the snubber capacitor. Users should expect to lose 0.5ns of tr/tf for every 1 cm of distance from I_{OUT} to the laser diode and back to the V_{DD} decoupling capacitor.

Power Consumption Issues

The ISL58831 has been designed for low power consumption. When disabled, the part takes negligible power consumption, regardless of the state of the other pins. In addition, for $\rm V_{DD}$ <3.5V, the ISL58831 will shut down to less than 1mA of supply current.

When in normal operation, the ISL58831 total power consumption depends strongly on the laser diode current and voltage. Since the total power consumption under worst case conditions could approach one watt, the burden is on the user to dissipate the heat into the board ground plane or chassis. An in-depth discussion of the effects of ground plane layout and size can be found in apnote AN1091.

FN7440.0 December 18, 2006

An approximate equation for the device power consumption is as follows (users must adjust accordingly for any duty cycle issues):

$$P_{DISS} = ([I_S + (14 \times \Sigma I_{IN})] \times V_{CC}) + [I_{DIODE} \times (V_{CC} - V_{DIODE})]$$
(EQ. 3)

where:

 $I_S = I_{S2}$ when oscillator off, or I_{S3} when oscillator on (see page 2)

 ΣI_{IN} = Sum of all the I_{IN} currents

V_{DD} = Device power supply voltage

IDIODF = Laser diode current

V_{DIODE} = Forward voltage of laser diode at current of I_{DIODE}

When using the ISL58831, the user must take extreme care not to exceed the maximum junction temperature of +150°C. Since the case to ambient thermal coefficient will dominate, and since this is very much defined by the user's thermal engineering, it is not practical to define a strict limit on power consumption. Furthermore, the case to ambient thermal coefficient may not be known precisely.

To assist in worst case conditions, it is possible to monitor the silicon temperature of the ISL58831 by forcing current into the ENABLE pin, which will then be at a voltage of VDD + V_{PN}, where V_{PN} is the forward biassed voltage of the ESD protection diode. Since ENABLE = HI is necessary for normal operation, the device can be operated as it would be in the real-life applications, while the temperature is monitored. The ISL58831 has been calibrated with a $1M\Omega$ resistor to +10V connected in series with the ENABLE pin, which results in an input current of approximately 4.5µA. The following graph allows the silicon temperature to be determined directly. The graph shows the measured ENABLE pin to V_{DD} pin differential voltage, which shows a linear voltage sensitivity of -2.26mV/°C. Users may wish to measure their specific part at +20°C (no warm-up) to allow for any statistical/process distribution, but the method is reliable and accurate.

By applying this method to the ISL58831 in an actual application, users can measure the silicon temperature under all operating conditions to determine whether their thermal engineering is sufficient. The thermal resistance of the QFN24 is +140°C/W when tested on a standard JEDEC JESD51-3 (single layer) test board. When using a standard JEDEC JESD51-7 (four layer) test board, the thermal resistance is +112°C/W. Actual thermal resistance is highly dependent on circuit board layout considerations.

Temperature Measurement Set-up and Results

Example: Measure ENABLE - V_{DD} under coolest condition of V_{DD} = 0V and V_{ENABLE} = 5V through 1M Ω . Suppose the result was 580mV at $T_{AMBIENT}$ = +20°C.

Now measure ENABLE - V_{DD} under the actual operating conditions. Suppose result (must be after thermal equilibrium has been reached) is 450mV, and the new I_{CC} value is 100mA.

Now one can calculate the temperature rise of (450 to 580)/ -2.26 = +57°C. Using the power dissipation of PW = ($V_{DD}^*I_{CC}$) - ($I_{CC}^*V_{DD}$), the θ_{JA} of the application can be calculated.

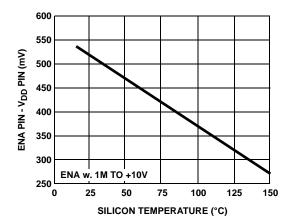
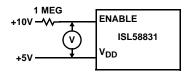
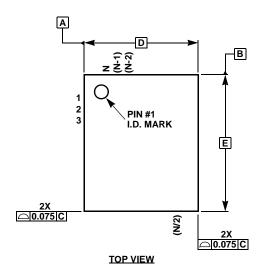
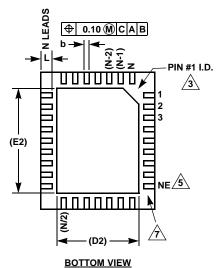
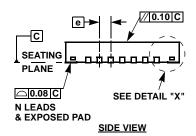
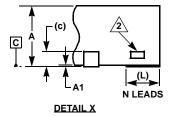



FIGURE 4. ISL58831 ON-CHIP THERMOMETER


For additional products, see www.intersil.com/en/products.html


Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at www.intersil.com/en/support/qualandreliability.html


Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.


For information regarding Intersil Corporation and its products, see www.intersil.com

QFN (Quad Flat No-Lead) Package Family

MDP0046

QFN (QUAD FLAT NO-LEAD) PACKAGE FAMILY (COMPLIANT TO JEDEC MO-220)

SYMBOL	QFN44	QFN38	Q	FN32	TOLERANCE	NOTES
Α	0.90	0.90	0.90	0.90	±0.10	-
A1	0.02	0.02	0.02	0.02	+0.03/-0.02	-
b	0.25	0.25	0.23	0.22	±0.02	-
С	0.20	0.20	0.20	0.20	Reference	-
D	7.00	5.00	8.00	5.00	Basic	-
D2	5.10	3.80	5.80	3.60/2.48	Reference	8
Е	7.00	7.00	8.00	6.00	Basic	-
E2	5.10	5.80	5.80	4.60/3.40	Reference	8
е	0.50	0.50	0.80	0.50	Basic	-
L	0.55	0.40	0.53	0.50	±0.05	-
N	44	38	32	32	Reference	4
ND	11	7	8	7	Reference	6
NE	11	12	8	9	Reference	5

SYMBOL	QFN28	QFN24	QFN20		QFN16	TOLER- ANCE	NOTES
Α	0.90	0.90	0.90	0.90	0.90	±0.10	-
A1	0.02	0.02	0.02	0.02	0.02	+0.03/ -0.02	-
b	0.25	0.25	0.30	0.25	0.33	±0.02	-
С	0.20	0.20	0.20	0.20	0.20	Reference	-
D	4.00	4.00	5.00	4.00	4.00	Basic	-
D2	2.65	2.80	3.70	2.70	2.40	Reference	-
Е	5.00	5.00	5.00	4.00	4.00	Basic	-
E2	3.65	3.80	3.70	2.70	2.40	Reference	-
е	0.50	0.50	0.65	0.50	0.65	Basic	-
L	0.40	0.40	0.40	0.40	0.60	±0.05	-
N	28	24	20	20	16	Reference	4
ND	6	5	5	5	4	Reference	6
NE	8	7	5	5	4	Reference	5

Rev 10 12/04

NOTES:

- 1. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 2. Tiebar view shown is a non-functional feature.
- 3. Bottom-side pin #1 I.D. is a diepad chamfer as shown.
- 4. N is the total number of terminals on the device.
- NE is the number of terminals on the "E" side of the package (or Y-direction).
- 6. ND is the number of terminals on the "D" side of the package (or X-direction). ND = (N/2)-NE.
- 7. Inward end of terminal may be square or circular in shape with radius (b/2) as shown.
- 8. If two values are listed, multiple exposed pad options are available. Refer to device-specific datasheet.